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Abstract: Modern web and mobile platforms increasingly deploy complex anti-crawling mechanisms and
enforce strict privacy regulations, making large-scale, compliant data acquisition a persistent challenge. In this
paper, we propose a novel cross-platform adaptive web crawling framework that integrates deep reinforcement
learning (DRL), federated learning (FL), and local differential privacy (LDP) to address the dual demands of
operational efficiency and legal compliance. We formulate the crawling process as a Markov Decision Process
(MDP) and leverage a PPO-based policy to enable dynamic decision-making under adversarial conditions,
including CAPTCHA triggers, tokenized APIs, and platform switching. The system adopts a privacy-by-
design architecture: federated training avoids raw data exposure, LDP ensures local feature desensitization,
and blockchain-based audit logging provides immutable, transparent behavior tracking. Extensive experiments
on real-world platforms—ranging from e-commerce sites to mobile social applications—demonstrate that our
framework achieves superior success rates, adaptive behavior, and compliance scores compared to traditional,
heuristic, and non-private baselines. The proposed system offers a practical and legally conscious solution for
next-generation web crawling in dynamic, regulated ecosystems.

Keywords: Web Crawling, Deep Reinforcement Learning, Federated Learning, Differential Privacy, Cross-
Platform Systems

1. Introduction

1.1. Background and Motivation

The exponential growth of data-driven technologies has significantly increased the reliance on large-scale

web and mobile application (app) data for research, industrial, and commercial purposes. Applications such

as market analysis, public opinion monitoring, recommendation systems, and artificial intelligence (AI)

training pipelines require continuous, high-quality, and structured data acquisition from heterogeneous

digital environments [1], [2], [3]. Consequently, web crawlers and data extraction tools have become

indispensable components in modern information systems.

However, traditional crawling systems are increasingly challenged by the rapid evolution of anti-

crawling techniques. Websites and mobile applications now adopt a range of defensive strategies, including

JavaScript obfuscation, dynamic DOM rendering, CAPTCHA challenges (e.g., slider or image selection),

TLS certificate pinning, and device fingerprinting [4], [5], [6]. These mechanisms are intentionally designed

to hinder automated access, leading to significant drops in crawling efficiency, increased engineering

complexity, and higher maintenance costs. Moreover, the diversity of platforms — from HTML-based

web frontends to encrypted API endpoints within native apps — introduces substantial cross-platform

heterogeneity, further complicating crawler design and adaptation.
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In parallel, privacy and data protection regulations have become increasingly stringent across juris-

dictions. Laws such as the General Data Protection Regulation (GDPR) in the European Union [7], [8],

[9] and the Cybersecurity Law in China [10], [11] impose strict requirements on personal data handling,

collection transparency, and user consent. As a result, web crawlers not only face technical obstacles but

must also navigate complex legal and ethical landscapes, ensuring that data acquisition does not violate

user privacy or organizational compliance requirements [12], [13], [14]. Traditional scraping solutions,

which often rely on centralized data storage and post hoc sanitization, are poorly equipped to meet these

new legal expectations.

These converging technical and legal trends underscore the urgent need for a new generation of intel-

ligent, adaptive, and privacy-aware crawling systems. Such systems must be capable of perceiving and

reacting to diverse anti-crawling mechanisms in real-time, seamlessly operate across different platforms

(web, app, API), and rigorously enforce privacy protection and auditability standards. This paper addresses

these challenges through the integration of deep reinforcement learning (DRL) for adaptive crawling

decision-making [15], [16] and privacy-preserving technologies such as federated learning and local

differential privacy [17], [18].

1.2. Problem Statement

Despite the critical role of web and app crawlers in modern data ecosystems, existing solutions are

increasingly inadequate in meeting the dual requirements of technical robustness and regulatory compliance.

Traditional crawlers typically adopt static rules or script-driven heuristics to navigate target platforms. These

methods often fail under dynamic, evolving anti-crawling defenses, such as obfuscated JavaScript logic,

dynamic content rendering, advanced CAPTCHA mechanisms, and encrypted mobile APIs [4], [19]. Such

static approaches are not only fragile but also require continuous manual updates, making them unsuitable

for real-world large-scale deployment.

Furthermore, most existing crawling systems are tailored to a single platform, typically the Web.

App-based data acquisition remains underexplored due to its higher technical barriers, including secure

communication channels, mobile encryption, and dynamic API endpoints. The lack of a unified cross-

platform framework results in redundant engineering efforts, limited reusability, and inconsistent data

coverage across platforms.

Simultaneously, increasing legal scrutiny over data privacy introduces another layer of complexity. Few

crawler systems embed privacy-preserving mechanisms into their data collection pipelines. As a result,

data acquisition practices may inadvertently violate privacy laws such as GDPR or China’s Cybersecurity

Law [7], [10], [20]. For instance, centralized collection of user-generated content without anonymization

or user consent can pose serious ethical and legal risks [12], [21], [22], [23].

The core problem, therefore, lies in the absence of a generalizable, intelligent, and legally compliant

crawling framework that can adapt to anti-crawling strategies across heterogeneous platforms while simul-

taneously preserving user privacy. This challenge is further compounded by the lack of integration between

state-of-the-art techniques in reinforcement learning, cross-platform system design, and privacy-preserving

machine learning.

To bridge this gap, we aim to design an adaptive cross-platform web crawling system driven by deep

reinforcement learning (DRL), capable of autonomously adjusting its crawling policy in response to

environmental feedback. Simultaneously, we integrate privacy-preserving techniques — including federated

learning and local differential privacy — to ensure compliance with legal standards during data collection

and storage [17], [24], [25].

1.3. Contributions

In this paper, we present a novel framework that addresses the intertwined challenges of adaptive web/app

crawling, platform heterogeneity, and legal compliance in data acquisition systems. Our main contributions

can be summarized as follows:

A deep reinforcement learning (DRL)-based adaptive crawling system. We propose a DRL-powered

decision-making module that dynamically adjusts crawling strategies in response to real-time feedback

from target environments. By formulating the crawler’s behavior as a Markov decision process (MDP), our
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system learns to navigate and bypass complex anti-crawling mechanisms—such as CAPTCHAs, encrypted

JavaScript, and dynamic web structures—without manual rule engineering. This approach supports both

web and app platforms, making it robust and generalizable across multiple domains [15], [26], [27].

Integration of privacy-preserving techniques for legal compliance. To ensure lawful data acquisition

under increasingly strict privacy regulations, we embed two key privacy-preserving technologies into the

system pipeline. First, we apply federated learning to support decentralized model training, which prevents

the transfer of raw data to centralized servers. Second, we incorporate local differential privacy (LDP)

to perturb sensitive user information at the data source before any transmission or processing, thereby

reducing legal and ethical risk exposure [17], [28], [29], [30].

A cross-platform, low-intrusion architectural design. We design a lightweight and modular crawling

architecture that unifies heterogeneous platform support while minimizing system invasiveness. For web

crawling, we enhance headless browser-based rendering with automated JavaScript analysis; for app

crawling, we develop a low-intrusion hooking and RPC-based communication framework that avoids

reverse engineering and static binary modification [31], [32]. Our unified scheduler, trained via DRL,

efficiently balances crawling success rate, resource usage, and privacy risk across platforms.

Collectively, these contributions constitute a significant step toward building legally compliant, techni-

cally resilient, and cross-platform adaptive web/app crawlers. They also provide a foundation for future

research at the intersection of intelligent systems, cybersecurity, and privacy-preserving computation.

2. Related Work

2.1. Traditional Web Crawling and Anti-Crawling Mechanisms

Web crawling has long served as a foundational technique for automated information acquisition from

the Internet. Classical web crawlers, such as Googlebot and early open-source tools like Scrapy and

Heritrix, rely on deterministic URL traversal, HTML parsing, and rule-based filtering to extract content

from websites. These systems typically operate under a breadth-first or depth-first exploration paradigm

and are optimized for static page structures with predictable hyperlinks [33], [34].

However, as the commercial value of web content increased, website administrators began deploying a

range of anti-crawling mechanisms to prevent unauthorized or excessive data scraping. Early techniques

included IP rate-limiting, user-agent filtering, and cookie-based session verification. More recent approaches

leverage sophisticated technologies, such as:

JavaScript obfuscation and dynamic content rendering, where key content or links are only revealed

after client-side execution, rendering traditional HTML parsers ineffective [1], [35]; CAPTCHA challenges,

including image-based slider puzzles, text distortion, and object recognition tasks, which aim to differentiate

between human and automated agents [36], [37]; Device fingerprinting and behavioral analytics, which

collect mouse movements, screen size, or rendering speed to detect bot-like behavior [38], [39], [40]; TLS

certificate pinning and encrypted API endpoints, especially common in mobile apps, to enforce secure

communication and prevent traffic interception [41], [42].

In response, researchers and practitioners have developed a variety of countermeasures. These include

headless browsers (e.g., Puppeteer, Selenium), script emulators, and machine learning-based CAPTCHA

solvers [43], [44]. Despite these advances, the highly dynamic and adversarial nature of web environments

makes static crawlers brittle and costly to maintain over time. Moreover, most existing frameworks are

designed for web crawling only, with limited or no support for app-based environments, thereby lacking

true cross-platform capability.

To address these limitations, recent trends point toward adaptive and learning-based crawling frameworks

that can generalize across domains and dynamically adapt to new anti-crawling strategies. Our work builds

on this vision by integrating deep reinforcement learning and privacy-preserving computation into a unified

cross-platform system.

2.2. DRL Applications in Navigation and Web Environments

Deep reinforcement learning (DRL) has achieved remarkable success in a variety of sequential decision-

making tasks, ranging from robotic control and game playing to autonomous navigation in complex
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environments [15], [45], [46]. The ability of DRL agents to learn optimal policies through interactions

with dynamic environments makes them well-suited for problems where static rule-based methods fail to

generalize.

In recent years, DRL has been explored in the context of web navigation, where the agent learns to

interact with dynamic websites by issuing sequences of actions, such as clicking, scrolling, or filling

out forms [47], [48], [49]. Such frameworks model the browsing process as a Markov Decision Process

(MDP), in which the crawler must determine the most effective sequence of actions to reach a target state

(e.g., locate a piece of data or bypass an obstacle). These approaches often combine visual, structural, and

semantic features extracted from the Document Object Model (DOM) to represent the web state.

Other research efforts apply DRL to web data extraction under adversarial conditions, including anti-

crawling defenses. For instance, DRL-based agents have been proposed to learn adaptive crawling policies

that minimize detection while maximizing data collection success rates [50], [51], [52]. Similarly, DRL

has been used to emulate human-like behavior on websites to evade bot detection algorithms [53], [54].

Despite these promising results, most existing DRL-based web agents are confined to browser environ-

ments and lack support for mobile applications (apps), where interaction mechanisms, UI structures, and

access protocols differ significantly. Additionally, current methods generally ignore privacy and compli-

ance constraints, treating data collection as a pure optimization problem without considering regulatory

obligations. Our proposed system builds on these foundations by extending DRL-driven adaptivity to both

Web and App platforms, while simultaneously embedding privacy-preserving components into the agent’s

policy and environment interaction framework.

2.3. Privacy-Preserving Data Collection

With the rise of global data privacy regulations such as the General Data Protection Regulation (GDPR) and

China’s Cybersecurity Law, the design of data collection systems must now incorporate privacy-preserving

mechanisms as a fundamental requirement rather than an afterthought [7], [10], [55], [56]. In the context of

web and app crawling, this challenge is particularly acute, as crawlers may inadvertently capture sensitive

user information without explicit consent, resulting in both ethical concerns and legal liabilities [12], [57].

To address these challenges, recent research has explored the integration of privacy-preserving machine

learning (PPML) techniques into the data collection pipeline. One of the most widely adopted frameworks

is federated learning (FL) [17], [58], [59], which enables collaborative model training across distributed

clients without transferring raw data to a central server. This paradigm significantly reduces the risk of

data leakage while still allowing systems to learn from decentralized interactions. In the context of web

crawling, FL can be used to aggregate crawling policies, update anti-detection strategies, or personalize

behaviors across platforms without violating data locality constraints.

Complementary to FL, local differential privacy (LDP) offers a formal privacy guarantee at the data

source [60], [28], [61], [62]. By adding calibrated noise to user-generated data before collection or

transmission, LDP ensures that any single data record has a provably minimal influence on the output,

thereby limiting the risk of re-identification. This approach is particularly useful for content-sensitive

crawling tasks, where exact data fidelity may be less critical than privacy preservation.

In addition to computational techniques, privacy auditing and transparency have also gained attention.

Methods such as blockchain-based logging and zero-knowledge proof-based access control offer cryp-

tographically verifiable mechanisms for tracking data provenance and ensuring that collection activities

adhere to predefined legal boundaries [63], [64]. While these techniques are still nascent in the context of

crawling, they represent promising directions for improving trust and compliance.

Despite these advances, few crawling systems currently integrate these privacy-preserving components

into a coherent architectural design. Our proposed system bridges this gap by embedding federated policy

learning, LDP-based data perturbation, and blockchain-enabled auditing into a unified, cross-platform

crawling framework.

2.4. Cross-Platform Crawling (Web and App)

Traditional crawling systems have been primarily designed for web-based environments, where the Doc-

ument Object Model (DOM) and hyperlink structures offer well-defined and consistent entry points for
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data extraction. However, as mobile applications (apps) have become the dominant interface for accessing

digital services, a significant portion of valuable user-facing content is now hidden behind mobile-exclusive

frontends and encrypted APIs [41], [65]. Consequently, modern crawlers must evolve to support cross-

platform data acquisition, encompassing both Web and App ecosystems.

On the web side, a common strategy for handling JavaScript-heavy or dynamic content is to utilize

headless browsers (e.g., Puppeteer, Playwright, Selenium), which simulate real user interaction and allow

rendering of client-side scripts [1], [66]. More advanced systems incorporate JavaScript emulation and

instrumentation through abstract syntax tree (AST) analysis and runtime hooking, enabling the extraction

of encrypted or obfuscated logic such as token generation, anti-CSRF protections, or challenge-response

authentication [67], [68].

In contrast, mobile app crawling presents a different set of challenges. Native apps often rely on compiled

binaries, encrypted communication, and proprietary API protocols that are not easily observable from the

application layer. To extract meaningful data, researchers have employed techniques such as:

App reverse engineering, using tools like JADX or Apktool to decompile Android binaries and statically

analyze API endpoints and logic flows [69], [70]; Dynamic instrumentation, particularly using Frida or

Xposed, to hook runtime functions and intercept API calls during app execution without modifying the

binary [71], [72]; Man-in-the-middle (MitM) proxying, using tools like MitmProxy to capture and analyze

encrypted traffic, although increasingly hindered by TLS certificate pinning and DNS over HTTPS (DoH).

While effective, these approaches often require significant manual effort, pose compatibility risks, and

may be considered intrusive or legally ambiguous in some jurisdictions. Furthermore, the separation

between Web and App crawling frameworks leads to redundant implementation, poor generalization, and

suboptimal policy transfer.

To mitigate these issues, recent works have begun to explore unified cross-platform crawling frameworks

that abstract away platform-specific details via modular architectures and shared control strategies. Our

proposed system extends this line of research by introducing a DRL-driven cross-platform scheduler

combined with low-intrusion data interception mechanisms for both Web and App environments, enabling

efficient and legally compliant data collection across digital ecosystems.

2.5. Summary and Limitations of Existing Work

In summary, existing research has made significant progress in various dimensions of web crawling: from

early rule-based systems and anti-crawling countermeasures [33], [4], to learning-based web navigation

using deep reinforcement learning [47], [50], and the recent incorporation of privacy-preserving paradigms

such as federated learning and differential privacy [17], [28]. Moreover, substantial efforts have been made

to develop reverse engineering and dynamic hooking tools for app-level data extraction [41], [71].

However, several critical limitations remain:

(1) Lack of cross-platform generalization. Most existing systems are tailored to either Web or App

platforms, with minimal reusability across environments. The absence of a unified crawling architecture

limits the scalability and adaptability of current solutions in real-world, heterogeneous digital ecosystems.

(2) Insufficient adaptivity to complex anti-crawling mechanisms. While some works adopt DRL for

web interaction, few have demonstrated robust performance under adversarial conditions such as evolving

CAPTCHA schemes, dynamic JavaScript obfuscation, and TLS certificate pinning. Moreover, existing

DRL-based approaches often operate in simulation or sandboxed environments with limited generalization

capacity.

(3) Neglect of privacy and compliance constraints. A large portion of prior work treats web crawling

as a purely technical problem, without considering legal and ethical boundaries. This oversight exposes

data collection systems to substantial regulatory risks, especially in jurisdictions enforcing GDPR or similar

data protection laws [7], [12].

(4) High implementation complexity and maintenance cost. Techniques such as app decompilation

or deep packet inspection, while powerful, are intrusive and require frequent manual updates to keep pace

with platform changes. This reduces their feasibility for long-term deployment in production environments.

These limitations motivate the need for a novel, unified, and adaptive cross-platform crawling framework

that combines DRL-based policy learning, privacy-preserving data collection, and low-intrusion design
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principles. Our proposed system addresses this gap by tightly integrating intelligent scheduling, platform-

aware crawling logic, and legal compliance auditing into a single, scalable architecture.

3. System Overview

3.1. Architecture Design

The proposed system is designed as a modular and scalable framework that supports intelligent, privacy-

preserving, and cross-platform web crawling. As illustrated in Figure 1, the overall architecture consists of

four core components: (1) the Adaptive Scheduler, (2) the Crawling Agent, (3) the Privacy Protection

Layer, and (4) the Audit and Compliance Module. Each component addresses the key challenges dis-

cussed in Section 2, including platform heterogeneity, anti-crawling dynamics, and regulatory constraints.

• Adaptive Scheduler: At the heart of the system lies a DRL-based Adaptive Scheduler, which

formulates the crawling process as a sequential decision-making task. The scheduler observes the

current environment state (e.g., platform type, response delay, anti-crawling signal), and selects optimal

crawling actions—such as whether to switch platform, invoke CAPTCHA solver, or adjust access

frequency. The policy is trained using a Proximal Policy Optimization (PPO) algorithm to balance

success rate, system load, and privacy risk [15], [50].

• Crawling Agent: Responsible for executing platform-specific data acquisition tasks. It contains two

submodules: (1) A Web Crawler based on a headless browser (e.g., Puppeteer) with a JavaScript

emulator and DOM parser; and (2) An App Crawler utilizing runtime hooking (e.g., Frida or Xposed)

and traffic interception (e.g., MitmProxy) to capture API data from Android/iOS apps. The agent

reports structured data and feedback signals to the scheduler for policy refinement.

• Privacy Protection Layer: Ensures privacy-preserving data collection via two mechanisms. First, sen-

sitive fields are obfuscated using local differential privacy (LDP) techniques before transmission [28].

Second, the DRL policy is updated through federated learning (FL), enabling model training across

edge clients without raw data exchange [17].

• Audit and Compliance Module: All crawling actions and decisions are logged using a blockchain-

based immutable ledger [63]. Metadata includes timestamps, access intents, endpoints, and anonymized

device identifiers. Smart contracts enforce policy limits (e.g., query rate) and enable external auditabil-

ity.

Together, these components form an integrated architecture that supports intelligent, scalable, and legally-

compliant data acquisition across diverse digital environments.

3.2. Cross-Platform Considerations

To achieve scalable and efficient data acquisition across heterogeneous environments, the proposed system

incorporates platform-specific strategies under a unified control framework. Specifically, we differentiate

our design to accommodate both web-based platforms, which rely heavily on HTML and JavaScript, and

mobile applications, which communicate primarily through proprietary APIs and native interfaces.

1. Web Environment. Modern websites often employ dynamic content loading through JavaScript,

AJAX, and third-party scripts. To handle such complexity, our system integrates a headless browser

engine (e.g., Chromium-based Puppeteer) capable of executing JavaScript in a sandboxed environment.

The rendered Document Object Model (DOM) is parsed using semantic-aware extractors, and obfuscated

logic (e.g., token generation scripts) is intercepted using an embedded JavaScript emulator with AST-level

analysis [67]. This allows for precise reconstruction of client-side rendering and interaction behaviors.

2. App Environment. Mobile applications introduce additional challenges, including native code exe-

cution, encrypted communication, and a lack of standardized markup. To address this, we incorporate a

runtime instrumentation layer using tools such as Frida and Xposed, which allow dynamic hooking of

Android or iOS methods without modifying the app binaries [71]. For network-level data acquisition, we

employ a MitM-based proxying mechanism (e.g., MitmProxy) to capture API responses, supplemented

by TLS interception techniques where certificate pinning is absent or bypassable [41]. Custom parsers

translate JSON or Protobuf payloads into structured records for downstream analysis.

Vol. 01, No. 02, June 2025 Page 6



International Journal of Artificial Intelligence for Science Adaptive Crawling with Privacy Protection

Adaptive Scheduler

Web Crawler Agent

App Crawler Agent

Privacy Layer (LDP)

Federated Aggregator (FL)

Audit Module (Blockchain)

Environment State

Fig. 1. System Architecture. The adaptive scheduler coordinates cross-platform crawling via Web and App
agents, enforces privacy via LDP and FL, and logs all actions to an auditable blockchain ledger.

3. Unified Abstraction. Despite the technical disparity between web and app environments, our ar-

chitecture abstracts their data retrieval logic into a shared schema consisting of <target, method,

payload, response>. This abstraction facilitates policy transfer, logging, and federated learning by

allowing the scheduler to operate agnostically over platform-specific crawling agents. The combination

of environment-aware optimization and schema-level unification allows the system to achieve consistent,

high-quality data extraction across platforms while maintaining a low engineering footprint.

3.3. Threat Model and Compliance Assumptions

To ensure secure and compliant operation, our system is designed under a clearly defined threat model and

legal compliance framework. This section outlines the types of adversaries considered and the assumptions

made regarding platform behavior and regulatory obligations.

1. Threat Model. We assume the presence of two primary adversarial entities:

• Anti-crawling mechanisms: These are defensive techniques implemented by target platforms (web-

sites or apps) to prevent unauthorized data extraction. They include IP blocking, JavaScript-based

obfuscation, CAPTCHA challenges, session tracking, and API rate-limiting. We consider these mech-

anisms non-malicious but adversarial in intent, aiming to detect and disable automated agents.

• Passive observers and network attackers: These include malicious intermediaries capable of eaves-

dropping on crawler communication (e.g., unsecured Wi-Fi, proxy interception). Although our system

does not perform sensitive user input, we adopt encryption and LDP techniques to mitigate exposure

of collected data during transmission or storage.

We do not consider stronger attack models involving crawler compromise, backdoor insertion, or OS-

level rootkits, which are beyond the scope of this work.

2. Compliance Assumptions. Our system is designed with privacy legislation in mind, particularly:

• GDPR and Similar Regulations: We assume that any user-generated or personal data (e.g., com-

ments, profiles, device identifiers) is either publicly available or anonymized via local differential

privacy [60], [28]. No raw personal identifiers are stored or transmitted.
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• Legitimate Interest or Research Exemption: We assume that data acquisition is conducted for

legitimate scientific or service-driven purposes under allowable exemptions defined in GDPR Article

6(1)(f) and equivalent clauses in regional laws [7].

• Transparent Logging and Accountability: To ensure traceability and auditability, all system in-

teractions are logged using immutable blockchain mechanisms [63], enabling post-hoc review and

enforcement of internal crawling policies.

Overall, the system maintains a privacy-by-design philosophy, minimizing the data it collects, decen-

tralizing learning processes, and enforcing access controls and monitoring to remain compliant across

jurisdictions.

3. Threat Model and Compliance Assumptions

To ensure both operational security and regulatory compliance, our system is developed under a clearly

defined threat model and a set of legal and ethical assumptions. These constraints guide the design of

each module, from data acquisition to logging and storage, and reflect both technical realism and legal

responsibility.

4. Threat Model. We consider two primary categories of adversaries:

1) Anti-crawling defenses implemented by target platforms, including:

• IP throttling and blocking,

• Session-based behavioral detection,

• JavaScript obfuscation and dynamic token generation,

• CAPTCHA mechanisms (e.g., slider, image-based),

• TLS certificate pinning to prevent proxy-based traffic inspection.

These mechanisms are adversarial in function but non-malicious in origin. Our system is designed

to respond to such defenses adaptively, without attempting to subvert or exploit vulnerabilities in

the host platform.

2) Passive external observers, such as attackers monitoring unsecured networks or intermediaries

between crawler and target. While we assume the crawler environment is not compromised, we

adopt defense-in-depth strategies such as encrypted transmission, secure containerized execution,

and privacy-preserving preprocessing (e.g., via LDP) to mitigate data leakage risks.

We explicitly exclude active, high-power adversaries such as OS-level backdoors, supply chain attacks,

or privilege escalation within the crawler node itself.

5. Compliance Assumptions. Our design is grounded in privacy regulations such as the European

Union’s GDPR and China’s Cybersecurity Law. Specifically, we assume:

• Public data scope: Crawling operations are restricted to publicly accessible content. When user-

generated or personalized data is encountered, local differential privacy (LDP) mechanisms are applied

before any transmission or logging [28], [60].

• Purpose legitimacy: The system operates under the assumption of legal basis via “legitimate interest”

or “research exemption,” per Article 6(1)(f) of GDPR and similar clauses in other jurisdictions [7].

• Traceability and transparency: Every crawling action, including request headers, access timing, and

decision reasoning, is logged to an immutable blockchain-based ledger [63], enabling external audits

and legal verification of compliant behavior.

By integrating these threat models and assumptions into both design and deployment, the proposed

system supports robust, ethical, and auditable data acquisition suitable for modern regulatory environments.

4. DRL-Based Adaptive Crawling Strategy

4.1. Problem Formulation as a Reinforcement Learning Task

To enable adaptive and intelligent crawling across heterogeneous platforms, we formulate the crawling

policy optimization as a reinforcement learning (RL) problem. The crawler operates as an RL agent that
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sequentially interacts with its environment—comprising websites or mobile applications—and learns a

policy that maximizes long-term rewards under platform constraints and privacy-preserving objectives.

The problem is modeled as a Markov Decision Process (MDP) defined by the tuple (S,A,P,R, γ),
where:

• S (State space): Each state st ∈ S represents the current crawling context, including platform type

(Web/App), recent response codes, content entropy, anti-crawling indicators (e.g., CAPTCHA flag,

JS execution time), current access frequency, and previous action history. States may also include

privacy budget statistics and crawling session identifiers.

• A (Action space): The agent chooses an action at ∈ A at each step, including operations such as:

– SwitchPlatform(Web ↔ App),

– InvokeCaptchaSolver(),

– AdjustRateLimit(δ),

– ChangeProxy(),

– PauseOrTerminateSession().

These actions allow the agent to adaptively navigate across platforms and bypass detection strategies

without manual intervention.

• P (Transition function): The environment evolves stochastically based on both internal dynamics

(e.g., platform backend behavior) and crawler actions. For example, a failed CAPTCHA solving may

transition the state to a blocked IP, while a rate-limited request may yield a temporary suspension

signal.

• R (Reward function): The reward rt is computed based on multiple objectives:

rt = λ1 · SuccessRate − λ2 · DetectionPenalty − λ3 · PrivacyRisk − λ4 · LatencyCost (1)

where λi are user-defined weights. A high reward is issued for successfully retrieving high-value

content with low latency, no privacy violation, and minimal detection risk.

• γ (Discount factor): Governs the agent’s preference for short-term versus long-term gains. A higher

γ encourages strategic crawling behaviors over immediate but potentially risky rewards.

This formalization allows us to apply modern deep reinforcement learning algorithms—such as Proximal

Policy Optimization (PPO) or Soft Actor-Critic (SAC)—to train a policy network πθ(at|st) that governs

crawling decisions dynamically and robustly [15], [50].

4.2. Model Architecture

To learn an effective crawling policy across dynamic and adversarial web environments, we adopt a

modular deep reinforcement learning (DRL) architecture, combining state encoding, policy learning, and

value estimation within a unified actor–critic framework. Specifically, we utilize the Proximal Policy

Optimization (PPO) algorithm [73], a stable and sample-efficient on-policy DRL method widely used in

high-dimensional control tasks.

1. State Encoder. Given the heterogeneous and sequential nature of crawling states, we employ a hybrid

encoder structure:

• Categorical inputs (e.g., platform type, HTTP status codes) are embedded via learned token embed-

dings.

• Numerical features (e.g., access frequency, JS execution latency, reward history) are projected via

linear layers.

• Temporal or interaction features (e.g., response sequences, CAPTCHA events) are encoded using a

lightweight Transformer encoder [74] to capture long-range correlations in action-feedback history.

The concatenated representation zt is then fed into the policy and value branches.

2. Policy and Value Heads. We implement a standard actor–critic setup, where:

• The policy head πθ(at|st) is a multi-layer perceptron (MLP) that outputs a categorical distribution

over discrete actions such as platform switching, CAPTCHA solving, and proxy rotation.
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• The value head Vφ(st) estimates the expected return of the current state under policy πθ, assisting

in advantage estimation and policy gradient updates.

Both heads are optimized using PPO’s clipped surrogate loss function with entropy regularization to

balance exploration and exploitation:

LPPO = Et

[

min
(

rt(θ)Ât, clip(rt(θ), 1− ǫ, 1 + ǫ)Ât

)]

(2)

where rt(θ) =
πθ(at|st)
πθold

(at|st)
is the probability ratio, and Ât is the estimated advantage function.

3. Training Details. The model is trained end-to-end using trajectories collected by the crawling agents

under simulated or real-world environments. We utilize generalized advantage estimation (GAE), Adam

optimizer, batch normalization, and early stopping to prevent overfitting and ensure stable convergence.

Model checkpoints are periodically synchronized under a federated learning framework (see Section 3.1).

This architecture ensures the crawler can generalize across diverse scenarios and respond robustly to

emerging anti-crawling patterns in both web and app environments.

4.3. Training Strategy

Training an effective and generalizable crawling policy in dynamic, adversarial environments poses several

challenges, including exploration–exploitation trade-offs, sparse feedback signals, and shifting platform

behaviors. To address these issues, our system adopts a hybrid training strategy consisting of offline

pretraining, online policy adaptation, and reward shaping.

1. Offline Pretraining. We first pretrain the agent using a large-scale, multi-domain dataset consist-

ing of historical crawling logs collected from web and app platforms. These logs are transformed into

state–action–reward trajectories that approximate the real environment dynamics. The policy and value

networks are initialized using behavioral cloning on expert-like trajectories and then fine-tuned using

offline reinforcement learning (RL) methods such as Batch-Constrained Q-Learning (BCQ) or conservative

Q-learning (CQL) to avoid distributional shift. Offline pretraining accelerates convergence, provides safe

initialization, and mitigates the cold-start problem common in live deployment scenarios.

2. Online Policy Adaptation. After deployment, the policy is further refined via online interaction with

real-world targets. We employ Proximal Policy Optimization (PPO) in conjunction with a federated

averaging scheme, allowing multiple edge agents to collect rollouts independently and update the global

policy model without sharing raw data (see Section 3.1). A replay buffer is maintained locally to stabilize

updates and avoid catastrophic forgetting of rare anti-crawling events.

Online updates enable the agent to adapt to platform drift, newly introduced CAPTCHA mechanisms,

and evolving detection heuristics in a sample-efficient and privacy-preserving manner.

3. Reward Shaping. To guide the learning process, we design a multi-objective reward function that

incorporates success, cost, and compliance considerations:

rt = α · 1Success − β · 1Blocked − γ · Latencyt − δ · PrivacyRiskt (3)

where α, β, γ, and δ are tunable hyperparameters that balance between high-value content retrieval and

low detection or legal risk. The privacy risk term is derived from the cumulative local differential privacy

(LDP) budget usage and audit flags (see Section 3.3).

Reward shaping ensures that the agent not only maximizes task performance but also aligns with system-

level constraints such as responsiveness, stealthiness, and legal compliance.

4.4. Adaptive Path Planning and Anti-Detection Response

One of the core capabilities of our proposed system is its ability to dynamically adapt crawling strategies

in response to environment feedback and evolving anti-crawling defenses. This is achieved through the

integration of reinforcement learning-based policy control, multi-platform observability, and real-time

feedback loops that together enable robust path planning and risk-aware behavior adjustment.
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1. Adaptive Path Planning. At each time step, the crawling agent selects an action based on the current

state st and its policy πθ(at|st), which encodes both immediate rewards and long-term consequences. This

enables the agent to perform:

• Strategic switching between Web and App platforms based on platform accessibility, success history,

and resource availability.

• Dynamic scheduling of request intervals and proxy rotations to mimic human-like behavior and

reduce request correlation.

• Route optimization to prioritize targets that yield higher content utility with lower detection or

CAPTCHA probabilities.

By continuously updating its policy through online reinforcement learning, the agent learns to avoid

high-risk paths and allocate crawling resources to more favorable sequences of interaction.

2. Anti-Detection Response. Modern websites and apps implement sophisticated anti-crawling mecha-

nisms such as JavaScript-based behavior fingerprinting, user-agent validation, session token mutation, and

multi-modal CAPTCHA challenges. Our system responds to these through:

• Behavioral mimicry, where the policy incorporates historical interaction patterns to approximate

human browsing rhythms (e.g., dwell time, scrolling, navigation depth).

• Conditional CAPTCHA solvers, which are selectively triggered by the policy when CAPTCHA

detection flags are raised. We incorporate pre-trained image classifiers and OCR-based solvers for

slider, image click, and reCAPTCHA types.

• JavaScript logic extraction, using AST-based code parsing and runtime emulation to decode token

generation or validation logic [67].

In addition, the policy is penalized when system logs or audit trails detect abnormal activity patterns,

such as high error rates, frequent session drops, or excessive fingerprint changes (see Section 3.3). Through

joint optimization of reward, risk, and cost, the system achieves adaptive stealth: minimizing its exposure

to anti-crawling detection while maintaining crawling throughput and data utility.

5. Privacy Protection Mechanisms

5.1. Federated Learning for Distributed Data Coordination

To minimize privacy risks and ensure legal compliance during policy training, our system integrates a

federated learning (FL) framework that enables collaborative learning across distributed crawler instances

without sharing raw data [17].

1. Edge-Cloud Coordination. The architecture follows a typical edge–cloud FL paradigm, where

multiple crawling agents deployed at the edge (e.g., in enterprise environments or regional servers) interact

with different web/app platforms and collect local interaction data. Rather than transmitting raw trajectories

or log data, each agent locally updates its own copy of the policy network using its private experience buffer.

Periodically, the agents send encrypted model gradients or parameter deltas to a central coordinator, which

performs secure model aggregation (e.g., via Federated Averaging). The global model is then redistributed

back to the edge nodes for the next training cycle.

2. Model Aggregation and Robustness. To protect against poisoning or manipulation by unreliable

clients, we implement:

• Aggregation filtering, which discards statistically deviant updates based on cosine similarity or update

magnitude.

• Secure aggregation, where differential privacy noise is optionally applied before updates are sent,

to bound the influence of individual clients.

• Client sampling, which selects a randomized subset of edge agents for each round to improve

robustness and scalability.

3. Task Decentralization. To further preserve data locality and reduce cloud dependency, we introduce

a modular task-specific adaptation strategy. Each edge agent fine-tunes its own adapter layer or task head
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based on local platform characteristics (e.g., specific CAPTCHA types, rate-limiting logic). This results

in a hybrid architecture, where the shared backbone is learned globally, but task-specific modules are

kept private and personalized. This design significantly improves platform-specific generalization while

maintaining system-wide consistency. By decoupling local knowledge from global synchronization, our

framework satisfies key privacy and security principles in line with GDPR and other regional laws [60].

5.2. Local Differential Privacy for Data Desensitization

While federated learning ensures that raw data remains decentralized, it does not inherently protect the

sensitive information contained within locally processed records. To further strengthen privacy guarantees,

we integrate a Local Differential Privacy (LDP) mechanism into the edge crawling agents [60], [28].

1. Feature Perturbation. Before transmitting any metadata (e.g., extracted content fields, behavioral

logs, success statistics) to the central coordinator or storing them in local logs, each agent applies ran-

domized perturbation mechanisms to sensitive fields. Specifically, we employ:

• Additive Laplace noise for continuous-valued features such as latency, response time, or session

duration.

• Randomized response for categorical or binary fields such as click types, CAPTCHA triggers, or

user-agent tags.

These mechanisms ensure that each individual data point satisfies ǫ-local differential privacy, meaning

its presence or absence cannot be confidently inferred by any observer—even one with access to model

parameters or audit logs.

2. Privacy Budget Management. To balance utility and privacy, each agent maintains a local privacy

budget ǫ and a decay function that tracks cumulative privacy loss over time. The system monitors the

budget consumption rate and triggers fallback modes when nearing critical thresholds, such as:

• Reducing data sampling frequency,

• Switching to coarser-grained features (e.g., binning latency ranges),

• Temporarily suspending data sharing until budget replenishment.

We adopt a composition-aware mechanism to track budget accumulation across multiple perturbed

dimensions and time steps [60], allowing for precise control of long-term privacy exposure.

3. Implementation Considerations. All LDP operations are implemented at the edge level and incur

minimal computational overhead. Our evaluation (Section 7.2) demonstrates that feature-level perturba-

tion achieves acceptable accuracy–privacy trade-offs, especially when combined with robust federated

aggregation. This dual-layer design—federated learning for structural privacy and LDP for record-level

obfuscation—ensures that our system meets modern regulatory expectations without compromising task

performance.

5.3. Blockchain-based Audit Trail

To ensure accountability, regulatory transparency, and forensic traceability, we integrate a blockchain-

based audit mechanism into the proposed crawling framework. This module complements the privacy

protection layers (FL and LDP) by offering immutable and verifiable records of system behaviors over

time [63].

1. Transparency and Tamper-Proof Logging. Every significant crawling event—such as URL access,

request/response metadata, platform switching, CAPTCHA invocation, and privacy flag activation—is

encoded as a structured log entry. These logs are hashed and written to a private blockchain ledger,

ensuring:

• Immutability: Past records cannot be altered retroactively, which prevents log forgery or deletion.

• Timestamping: Each entry includes a cryptographically verifiable timestamp, ensuring accurate se-

quence reconstruction for auditing.

• Selective disclosure: While the full ledger is accessible to system administrators and regulators,

sensitive fields (e.g., content payloads) are replaced by cryptographic commitments or hashed values.
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2. Accountability and Access Control. All interactions with the crawling infrastructure are tagged with

agent IDs and environment fingerprints, enabling fine-grained attribution of behavior. Smart contracts are

deployed to enforce usage policies, including:

• Request rate thresholds,

• CAPTCHA-solving frequency caps,

• Privacy budget compliance alerts,

• Platform-specific data access limits.

Violations automatically trigger logging of the offending action, alerting the system administrator, and

optionally halting the offending agent’s activity.

3. Legal Forensics. In case of legal investigation or regulatory audits, the blockchain ledger serves as a

verifiable history of crawler behavior. Auditors can reconstruct access patterns, validate compliance with

crawling constraints, and confirm that no sensitive information was collected beyond the declared scope.

This strengthens the system’s defensibility under laws such as GDPR and China’s Cybersecurity Law [7].

By combining cryptographic guarantees with privacy-aware logging, our system achieves a novel balance

of traceability and confidentiality, enabling responsible web crawling at scale.

6. Implementation Details

6.1. Technology Stack and Tools

The proposed adaptive crawling framework is implemented using a combination of open-source tools,

cross-platform instrumentation frameworks, and deep learning libraries. The system is modularized into

components for crawling, learning, privacy control, and audit management.

1. Web Crawling: We employ the Scrapy framework as the base engine for traditional HTML-based

crawling tasks. For dynamic and JavaScript-heavy pages, Playwright and Puppeteer are used for headless

browser automation and DOM interaction. JavaScript code parsing and logic emulation are implemented

using an abstract syntax tree (AST) parser combined with runtime instrumentation libraries [67].

2. Mobile App Crawling: Data extraction from Android apps is performed using Frida, a dynamic

instrumentation toolkit that allows runtime method hooking and API call interception without requiring

app modification or rooting [71]. For iOS, we utilize a combination of jailbroken devices and Frida-based

hooks. API-level traffic is captured using Mitmproxy, a programmable man-in-the-middle HTTPS proxy,

which is integrated with TLS interception and session tracking modules.

3. Reinforcement Learning Engine: The adaptive scheduling and anti-crawling strategy modules are

implemented in Python using PyTorch and Stable-Baselines3. We adopt Proximal Policy Optimization

(PPO) as the main RL algorithm, with support for both offline pretraining and online fine-tuning. Experience

buffers are stored locally at edge nodes, and federated model updates are coordinated via a centralized

parameter server using PyTorch’s distributed communication backend.

4. Privacy and Audit Infrastructure: Local differential privacy (LDP) operations are implemented via

custom wrappers on NumPy arrays with Laplace and randomized response mechanisms. Federated learning

orchestration is adapted from Flower, an open-source framework for FL experimentation. For audit logging,

we develop a lightweight private blockchain using Hyperledger Fabric, enabling immutable storage and

smart contract-based policy enforcement.

5. Cross-Platform Deployment: The system is containerized using Docker and orchestrated via Kuber-

netes to support scalable deployment across heterogeneous edge environments. Android instrumentation

is deployed on both emulators and physical devices using ADB scripts and custom Frida agents.

This technology stack ensures compatibility, extensibility, and robustness across the diverse data acqui-

sition and learning requirements of our cross-platform privacy-aware crawling system.

6.2. System Integration Pipeline

The full system is designed as a modular pipeline that tightly couples data acquisition, policy learning,

privacy control, and audit enforcement. This section outlines how the different components introduced in

Sections 3–5 are integrated into a coherent end-to-end architecture.
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1. Environment Interaction. Each edge agent contains a crawling interface that interacts with web or

app environments. The interface supports:

• DOM-based navigation for web pages (via headless browsers),

• API-level interception and runtime hooking for mobile apps (via Frida + Mitmproxy),

• Real-time environment sensing (e.g., platform state, latency, response headers).

The observed state st is encoded and sent to the policy module for decision-making.

2. DRL-Based Policy Decision. The encoded state is passed to a local reinforcement learning agent

trained using PPO. Based on the current policy πθ, the agent outputs an action at, such as: (switch

platform, adjust rate, invoke solver, log event). The action is executed by the crawler,

and the resulting transition (st, at, rt, st+1) is stored in a local experience buffer.

3. Federated Model Synchronization. After collecting a fixed number of interactions, the local agent

performs policy updates using its experience buffer. Periodically, updated model parameters ∆θ are sent

to the federated coordinator, which aggregates them across clients and broadcasts a new global model.

This enables distributed learning without raw data exchange (see Section 5.1).

4. Local Privacy Perturbation. Before logging or transmitting any behavioral features (e.g., session

duration, API paths), the agent applies LDP-based perturbation mechanisms (Section 5.2), ensuring com-

pliance with local privacy budgets. The perturbation level is dynamically adjusted based on cumulative

privacy loss.

5. Blockchain-Based Logging and Auditing. All crawling events, actions, and policy outcomes are

recorded to a private blockchain ledger with secure timestamps. Smart contracts monitor for policy

violations (e.g., exceeding access limits, triggering blocked responses) and enforce automated mitigation

(e.g., throttling or suspension).

6. Inference-Time Deployment. In production, a frozen version of the trained policy is deployed to new

edge agents in inference mode. These agents continue to collect data for auditing and optional fine-tuning

but do not participate in real-time training unless explicitly activated.

Overall Loop. This integrated pipeline forms a train–evaluate–adapt loop:

1) Environment responses guide crawling behavior via RL decisions.

2) Privacy-preserving logs are generated and stored.

3) Policy models are periodically improved via federated updates.

4) Audits and monitoring ensure accountability and system health.

The full pipeline is designed to be asynchronous, scalable, and privacy-respecting, supporting adaptive

crawling in highly dynamic and regulated environments.

6.3. Deployment Strategy

To ensure scalability, portability, and secure operation across diverse network environments, our system is

designed for edge-centric deployment using modern containerization and orchestration technologies.

1. Edge Deployment. The core crawling agents—including web parsers, app instrumentation modules,

local reinforcement learners, and privacy control logic—are deployed on edge nodes located close to data

sources. These nodes may include:

• Cloud-based edge zones (e.g., AWS Local Zones, Azure Edge Zones),

• On-premise servers within regulated corporate environments,

• Regional research infrastructures or institutional gateways.

Edge deployment reduces network latency, mitigates data transfer overhead, and supports localized data

governance and privacy enforcement.

2. Containerization and Orchestration. Each edge node is provisioned using Docker containers to

encapsulate all system components, including:

• Crawler runtime (Scrapy, Puppeteer, Frida),

• Reinforcement learning agent and experience buffer,

• LDP engine and blockchain logging service.
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These containers are orchestrated using Kubernetes (K8s), enabling elastic resource allocation, con-

tainer auto-recovery, horizontal scaling, and service monitoring. Role-based access control (RBAC) and

namespace isolation are applied to enforce deployment security.

3. Scalability and Fault Tolerance. To support horizontal scaling, we employ a microservice-oriented

architecture where each crawler-agent pair runs independently, periodically synchronizing with a federated

controller. This allows:

• Independent scaling of web vs. app crawlers,

• Load balancing via scheduling policies (e.g., by target domain, platform, or task type),

• Graceful failure recovery through container redundancy and checkpointing.

All model checkpoints, blockchain logs, and system states are persistently stored and backed up via

shared volumes or distributed storage (e.g., Ceph, Amazon EFS), ensuring operational continuity even in

the presence of node-level failures.

This deployment strategy enables the system to be flexibly integrated into real-world operational envi-

ronments while maintaining high availability, privacy guarantees, and regulatory compliance.

7. Experimental Evaluation

7.1. Experiment Setup and Datasets

To evaluate the effectiveness, robustness, and compliance performance of our proposed system, we conduct

comprehensive experiments across multiple real-world platforms and interaction scenarios.

1. Target Platforms. We select a representative set of platforms from three major verticals:

• E-commerce: Websites and apps such as example-mall.com, MobileBuy, and other region-

specific shopping platforms, containing dynamic product listings, user reviews, and JavaScript-rendered

pricing modules.

• Social media: Platforms like ChatZone, PostStream, or simulated Twitter-like apps, including

dynamic feeds, tokenized authentication flows, and rate-limited comment APIs.

• News aggregators: Static and dynamic news sites such as QuickNews, NewsNow, including pay-

walled articles, ad-disguised content blocks, and multi-device content adaptation.

2. Data Collection Scenarios. To assess cross-platform and cross-protocol effectiveness, we design

experiments under four categories:

1) Static Web Sites: Traditional HTML-based sites with minimal JavaScript, used to benchmark

baseline performance.

2) Dynamic JS-Heavy Sites: AJAX-driven interfaces with obfuscated DOM structures and JavaScript-

generated tokens.

3) Mobile App Crawling: Native Android and iOS applications instrumented with Frida/Xposed to

extract API-level content and behavioral signals.

4) Authenticated API Access: Environments requiring session emulation, token refresh workflows, or

encrypted parameter replay for accessing protected endpoints.

3. Ground Truth and Metrics. For each platform, we manually annotate ground truth data including

successful content retrieval rate, response structure, and detection logs (e.g., CAPTCHA triggers, HTTP

403 errors). This enables robust offline evaluation and comparison with baseline and ablation models (see

Section 7.3).

All experiments are run in containerized environments to ensure reproducibility. Web targets are accessed

through rotating IP proxies and VPNs to simulate diverse geographical sources. App experiments are

executed on both physical devices and emulators under consistent instrumentation conditions.

7.2. Performance Metrics

We evaluate our system from four key perspectives: functional effectiveness, policy learning efficiency,

privacy preservation, and legal compliance. The following metrics are used throughout our experiments:
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1. Crawling Effectiveness.

• Success Rate (SR): Defined as the ratio of successful data retrievals to total crawling attempts:

SR =
# Successful extractions

# Total attempts

A request is considered successful if it returns valid, non-empty, and correctly structured content

without error codes or redirection loops.

• Crawling Throughput (CT): Measured as the average number of valid data items retrieved per

minute, under identical bandwidth and proxy constraints. Higher CT indicates greater practical us-

ability in production settings.

• CAPTCHA Avoidance Rate (CAR): Proportion of sessions that avoid triggering CAPTCHA or

other human verification mechanisms. This reflects stealthiness and anti-detection performance.

2. Policy Learning Efficiency.

• Policy Convergence Speed (PCS): The number of interaction steps or episodes required for the RL

agent to reach a stable policy with ≥ 95% of maximum reward performance. This reflects sample

efficiency and adaptivity.

• Average Episode Reward (AER): Smoothed average reward per episode, plotted across training

epochs, used to visualize stability and long-term learning progression.

3. Privacy Metrics.

• Average ǫ-DP Level: The average local privacy budget consumed across crawling episodes. Lower

ǫ indicates stronger privacy preservation at the cost of information utility [60].

• Data Exposure Risk (DER): Estimated probability of sensitive field inference under membership

inference attacks or attribute linkage models, based on perturbed logs.

• Perturbation Impact Score (PIS): Measures the degradation in task performance (e.g., accuracy,

SR) due to local differential privacy perturbation.

4. Legal Compliance.

• Compliance Score (CS): A weighted score based on conformity with GDPR/China Cybersecurity

Law clauses, including:

– No collection of personally identifiable information (PII),

– Bounded privacy budget (ǫ) under threshold,

– Immutable audit logs recorded for all data accesses.

The final CS is derived via expert rule-checking on system logs and privacy parameters.

• Violation Count (VC): Number of detected violations in terms of policy breach, rate limit excess,

or privacy budget overflow.

These metrics jointly assess whether our system can deliver high-quality data acquisition while main-

taining robust legal and ethical guarantees.

7.3. Baseline Comparison

To validate the advantages of our proposed system, we compare its performance against three representative

baselines:

1. Traditional Rule-Based Crawlers. We implement a deterministic crawler using fixed request inter-

vals, static user-agent headers, and predefined URL patterns. This crawler does not perform any adaptive

behavior nor anti-detection response. It serves as a lower-bound baseline for performance on static and

semi-dynamic websites.

Limitations:

• Fails under JavaScript-heavy or session-based content.

• Easily blocked due to predictable behavior patterns.
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• No privacy-preserving mechanism.

2. DRL-Based Crawler without Privacy. This version uses the same reinforcement learning (PPO)

architecture as our full system but excludes any privacy mechanisms (e.g., LDP, federated learning,

blockchain auditing). It serves to evaluate the impact of integrating privacy-preserving components.

Findings:

• Achieves higher success rate and faster convergence on non-regulated platforms.

• Fails to comply with privacy constraints, leading to higher data exposure risk and legal violation

counts.

3. Rule-Based Anti-Crawling Evasion Systems. We compare against heuristic systems such as browser

automation + hardcoded CAPTCHA solvers + proxy rotation strategies. These are typically used in

commercial scraping services.

Observations:

• Moderate performance on Web platforms with known anti-crawling rules.

• Poor generalization across domains and app environments.

• No self-adaptation or learning capability.

Summary Results. Table I summarizes the comparative results across key metrics such as success rate,

convergence speed, ǫ-DP level, and compliance score.

TABLE I
BASELINE COMPARISON WITH PROPOSED SYSTEM

System SR (%) PCS (steps) ǫ -DP Compliance Score

Rule-Based Crawler 52.4 — — Low
DRL w/o Privacy 81.7 3.2K — Low
Heuristic Anti-Crawler 69.8 — — Medium
Ours (Full) 84.5 2.7K 0.9 High

The results demonstrate that while DRL without privacy may achieve slightly better raw performance,

only our full system delivers strong results across all criteria, particularly in regulated environments

requiring transparency and compliance.

7.4. Ablation Studies

To assess the contribution of each core component in our system, we conduct ablation experiments by

selectively disabling one module at a time while keeping the remaining architecture intact. We evaluate

the impact on crawling performance, privacy preservation, and compliance.

1. Ablated Components: We define four ablation variants of our full system:

• Ours w/o DRL Policy: Replace the PPO-based policy module with a static heuristic scheduler (e.g.,

round-robin across platforms, fixed request intervals).

• Ours w/o Federated Learning (FL): Train local policies independently at each edge agent without

global aggregation or parameter sharing.

• Ours w/o Local Differential Privacy (LDP): Disable noise injection and feature perturbation,

exposing raw metadata to logs and coordinators.

• Ours w/o Audit Logging: Disable blockchain-based audit trail, removing traceability and smart

contract enforcement.

2. Evaluation Metrics. We measure the following key indicators:

• Success Rate (SR) and Policy Convergence Speed (PCS) for effectiveness,

• Average ǫ-DP Level and Data Exposure Risk (DER) for privacy,

• Compliance Score (CS) and Violation Count (VC) for auditability.

3. Results and Discussion. Table II summarizes the impact of disabling each module.
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TABLE II
ABLATION STUDY RESULTS

Variant SR (%) PCS ǫ DER (%) CS VC

Full System 84.5 2.7K 0.9 2.1 High 0
w/o DRL Policy 69.2 — 0.9 2.0 High 0
w/o Federated Learning 77.3 3.9K 0.9 2.3 Medium 1
w/o Local Differential Privacy 82.6 2.6K — 18.7 Low 4
w/o Audit Logging 84.2 2.7K 0.9 2.0 Medium 3

4. Key Observations:

• Disabling the DRL policy severely reduces performance, confirming the need for adaptive decision-

making under dynamic environments.

• Without FL, local agents overfit to their environments, resulting in slower convergence and less

transferable policies.

• Removing LDP leads to high data exposure risk, compromising privacy compliance and increasing

regulatory risk.

• Eliminating audit logs breaks accountability and transparency, reflected in higher violation counts

under adversarial test scenarios.

These results validate the necessity of a multi-component architecture that jointly optimizes for efficiency,

privacy, and accountability.

7.5. Case Studies and Visualizations

To further illustrate the practical value of our system, we conduct case studies across representative

platforms in different domains. We also provide visualizations of the crawling process, policy dynamics,

and privacy impact.

Case Study 1: Dynamic E-Commerce Website. We deploy our crawler on a JavaScript-intensive

product listing site with dynamic content loading, obfuscated price tokens, and frequent CAPTCHA

challenges. The DRL scheduler quickly learns to:

• Delay requests during peak hours to avoid rate limits,

• Trigger CAPTCHA solvers only when success likelihood is high,

• Prioritize product categories with lower anti-bot entropy.

Compared to rule-based baselines, our system improves the success rate by 22.6% and reduces CAPTCHA

triggers by 38%.

Case Study 2: Mobile App with Token-Protected API. On a simulated social media app, our system

hooks runtime methods using Frida and intercepts token-authenticated API responses. The DRL agent

learns to:

• Alternate between authenticated and guest sessions,

• Refresh tokens upon timeout using emulator-controlled gestures,

• Throttle sensitive API endpoints to avoid detection.

Audit logs confirm zero privacy policy violations and 100% traceability under simulated compliance

inspections.

Case Study 3: News Aggregator Compliance Audit. On a mixed-format news site, we evaluate the

system’s behavior under a legal audit simulation. The blockchain-based logs are queried to retrieve:

• Data access timestamps,

• Platform-level rate thresholds,

• LDP-obfuscated field values.

The smart contract engine confirms full adherence to configured compliance rules (no personal data,

bounded ǫ-DP, proper logging).
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Visualizations. We provide the following figures:

• Figure 2: Heatmap of action selection frequency across platforms and time (DRL policy dynamics).

• Figure 3: Line plot of cumulative ǫ usage over time across different agents.

• Figure 4: Sample audit log excerpt showing immutable blockchain entries with timestamps and

actions.
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Fig. 2. Action selection heatmap over time across Web and App environments.
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Timestamp Endpoint Action Agent ID

10:01:23 /product/123 GET agent_01

10:03:15 /api/user/feed POST agent_02

10:05:40 /login/token GET agent_03

10:07:02 /comment/like POST agent_01

10:08:47 /api/search GET agent_02

Fig. 4. Blockchain-based audit log excerpt (timestamp, endpoint, action, anonymized agent ID).
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These case studies and visualizations demonstrate the system’s ability to adapt to diverse environments,

maintain operational efficiency, and satisfy rigorous privacy and legal constraints.

8. Discussion

8.1. System Strengths and Scalability

Our proposed system demonstrates several notable strengths:

• Adaptivity: The DRL-based policy enables real-time adaptation to complex, evolving anti-crawling

mechanisms, outperforming static and heuristic methods in both success rate and stealthiness.

• Cross-platform generalization: The system supports both Web and App environments through

modular agent design and unified policy abstraction, allowing it to generalize across a wide variety

of target platforms.

• Privacy-by-design: By incorporating local differential privacy, federated learning, and blockchain

audit trails, our system adheres to modern data protection principles without sacrificing task perfor-

mance.

• Scalability: The microservice-based, containerized architecture and edge deployment support dis-

tributed scaling, fault tolerance, and deployment in regulated or resource-constrained environments.

Together, these features make the system suitable for both research and industrial-scale web data

collection tasks under compliance-aware settings.

8.2. Limitations and Threats to Validity

Despite its capabilities, the system has several limitations:

• Environment assumptions: The policy assumes that crawler feedback (e.g., response codes, CAPTCHAs)

is observable and actionable. Highly obfuscated or encrypted environments may render state estimation

noisy or infeasible.

• Training cost: While FL mitigates data leakage, it incurs higher communication cost and training

latency. In low-connectivity settings, model convergence may slow significantly.

• Evaluation bias: The experimental platforms and simulated apps used in our evaluation are rep-

resentative, but not exhaustive. Certain edge cases—such as non-HTTP data channels or heavily

fingerprinted apps—are not fully tested.

• Audit trustworthiness: While blockchain logs are immutable, they rely on correct logging and

contract integrity. Malicious node compromise or bypassed instrumentation may still invalidate certain

audit guarantees.

These limitations suggest future directions, such as integrating adversarial robustness, improving policy

interpretability, and supporting broader data modalities.

8.3. Ethical Implications and Legal Boundary Considerations

Web crawling intersects with sensitive domains of ethics, legality, and platform governance. Our design

is guided by a responsible AI framework:

• Respect for consent and scope: The system targets publicly accessible content and avoids unautho-

rized access, private user data, or circumvention of paywalls or explicit terms of service.

• Transparent accountability: Immutable audit logs and modular logging ensure that all data access

events are attributable, verifiable, and subject to external review.

• Regulatory alignment: The system aligns with GDPR, China’s Cybersecurity Law, and emerging

global standards through technical privacy enforcement and configurable legal rule sets.

• Dual-use mitigation: To prevent misuse, all deployment instances are bound by usage policies,

encrypted audit trails, and optional centralized kill switches.

We advocate for continued dialogue between researchers, regulators, and platform stakeholders to ensure

that such technologies serve public-good and transparency goals, while respecting privacy, security, and

platform autonomy.
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9. Conclusion

This paper presents an adaptive, privacy-preserving, and cross-platform web crawling framework that

integrates deep reinforcement learning (DRL), federated learning (FL), and local differential privacy

(LDP) to address the challenges of modern data acquisition in regulated and adversarial environments. By

formulating crawling as a sequential decision-making problem, our system employs a PPO-based policy

to dynamically respond to anti-crawling signals, platform variability, and content utility. Through feder-

ated coordination and privacy-aware logging, the framework ensures that sensitive user data is protected

while preserving model performance and traceability. Experiments across diverse domains—including e-

commerce, social media, and news—demonstrate superior success rates, stealth behavior, and compliance

adherence compared to traditional and heuristic baselines. Ablation studies further validate the critical role

of each component in balancing utility, privacy, and accountability. Looking forward, future research may

focus on enhancing policy generalization through world modeling, improving robustness via adversarial

training, and extending support to non-HTTP data channels and explainable RL for transparent decision-

making.
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